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Definition:  The greatest common divisor of two non zero integer a and b is the 

largest common divisor of a and b .we denote this integer by gcd(a, b). 

   

 A greatest common divisor of two integer a and b is a positive integer d such 
that 

 i). d  a and  d  b 

 ii). if, for an integer c, c  a and  c  b, then c  d  

 

GCD of a and b denoted by  (a, b) = d 
 

Example: 
 
 i)     1, 2, 3, 4, 6, 12 are common divisors of 24 and 60  
 
 ii)   12 is the greatest common divisor of 24 and 60.  i.e. 12 = (24, 60) 



Well ordering principle: 
Every non empty set of positive integers contains a smallest member. 

Extended Euclidian Algorithm/GCD is a Linear combination 

Theorem: 

For any non zero integers a and b, there exist integers s and t such that gcd(a, b) = as + bt . 

Moreover, gcd (a, b) is the smallest positive integer of the form  as + bt. 

Proof: 

Consider the set S = { am + bn : m, n are integers and am + bn  >0}. Since S is non 

empty set, the well ordering principle asserts that S has a smallest member,  say member 

is d such that  d = as + bt. We claim that d = (a, b).  

By DAT for a and b,    a = dq + r, where 0  r  d.   

If r  0, then r = a – dq = a – (as + bt)q = a – asq – btq = a(1 –sq) + b(- tq) S, but r<d  

This is contradicting the fact that d is a smallest member of S. So r = 0. 

         Then a = dq  d  a. analogously d  b. This proves that d is a common divisor of  

            a and b.  



Now suppose that d is another divisor of a and b  i.e. d a and d  b  

 a = d h and b = d k for some h, k  Z. then 

      d = as + bt = (d h)s + (d k)t = d(hs + kt),  

 so that ,  d is a divisor of d. 

      Thus d is the greatest common divisor of a and b. 



Theorem:  If a, b  I, b  0 and  a = bq + r, where 0  r  b, then (a, b) = (b, r) . 

Proof:  let (a, b) = c and  (b, r) = d. Now (a, b) = c   c  a and c b  c  (a – bq)  

Then                    c  r               (r = a – bq)  

Hence we have c  b and c  r  i.e. c is a common divisor of both b and r. 

 therefore  c  (b, r)  c  d                                ….1 

Similarly (b, r) = d  d b and b  r  c  (bq + r)  

Then                    d  a 

Thus d  a and d  b  i.e. d is a common divisor of both a and b. 

therefore  d  (a, b)  d  c                                …2     

              c =d                                i.e.  (a, b) = (b, r)  



The Euclidian algorithm  

 Theorem:  Let a =  r0 and b = r1  be positive integers. If the division algorithm is successively  

Applied to obtain  

              ri  = ri+1 qi+1 + ri+2          with  0  ri+2  ri+1       i = 1, 2, 3, …n – 1                   ……..1 

     and        rn+1  = 0,   Then  (a, b) = rn ; the last non zero integer. 

Proof:    Let a =  r0 and b = r1  be positive integers with a  b. Now put i = 1, 2, 3, …n – 1 

till the remainder becomes zero.  We can tabulate the result as follow 

   r0  = r1 q1 + r2          0  r2  r1 

   r1  = r2 q2 + r3           0  r3  r2 

  r2  = r3 q3 + r4          0  r4  r3 

  . . . . . . 

  . . . . . . 

.   rn-2  = rn-1 qn-1 + rn          0  rn  rn-1 

  rn-1  = rn qn + rn+1          ( rn+1  = 0) 

 



Example:  Find the GCD of 26 and 118 and express it in the form   26s + 118 t. 
 

Solution:  

  By Euclidean algorithm, we have  

  118 = 26. 4 + 14 

  26 = 14. 1 + 12 

  14 = 12.1+   2 

   12 = 6. 2 + 0   

 Hence  ( 26, 118) = 2 



Now from the last but one equation i.e.  d = as + bt 

 

           2    = 14 – 12.1 

 = 14 – [26 – 14.1].1 

 = 14 – 26.1 + 14.1 

 = [118 – 26.4 ].2 – 26.1 

 = 118.2 – 26.8 – 26. 1 

  = 118.2 – 26.9 

  = 118.(2) + 26.(- 9) 

Therefore    s = 2  and  t = -9 



 by previous theorem each of the above equation ,we get 
  
      (r0, r1 ) = (r1, r2 ) = (r2, r3 ) = …….= (rn-2, rn-1 )  = (rn-1, rn ) = (rn, 0 ) = rn.   
 

   therefore   (a, b) = rn,   where r0 = a and r1 = b.  

Example:  Find the GCD of 427 and 616 and express it in the form   427 s + 616 t. 
 

Solution:  

  By Euclidean algorithm, we have  

  616 = 427. 1 + 189 

  427 = 189. 2 + 49 

  189 = 49. 3 + 42 

   49 = 42. 1 + 7 

   42 = 7.6 + 0 

 Hence  ( 427, 616) = 7 



Now from the last but one equation i.e.  d = as + bt 

 

           7    = 49 + 42.1 

 = 49 – [189 – (49).3].1 

 = (49).4 – 189.1 

 = [427 – (189).2].4 – 189.1 

 = (427).4 –(189).9 

 = (427).4 – [616 – (427).1].9 

              7 = 427.13 + 161. (-9) 

       Therefore    s = 13  and  t = -9 
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