Mahatma Fule Arts, Commerce, and Sitaramji Chaudhari Science Mahavidyalaya, Warud

Department of Mathematics

Topic: Extended Euclidian Algorithm

Dr. R. S. Wadbude

Associate Professor

Greatest common divisor

Definition: The greatest common divisor of two non zero integer a and b is the largest common divisor of a and b .we denote this integer by $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$.

A greatest common divisor of two integer a and b is a positive integer d such that
i). $\mathrm{d} \mid \mathrm{a}$ and $\mathrm{d} \mid \mathrm{b}$
ii). if, for an integer $\mathrm{c}, \mathrm{c} \mid \mathrm{a}$ and $\mathrm{c} \mid \mathrm{b}$, then $\mathrm{c} \mid \mathrm{d}$

GCD of a and b denoted by $(\mathrm{a}, \mathrm{b})=\mathrm{d}$

Example:

i) $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$ are common divisors of 24 and 60
ii) 12 is the greatest common divisor of 24 and 60. i.e. $12=(24,60)$

Well ordering principle:

Every non empty set of positive integers contains a smallest member.

Extended Euclidian Algorithm/GCD is a Linear combination

Theorem:

For any non zero integers a and b, there exist integers s and t such that $\operatorname{gcd}(a, b)=a s+b t$.
Moreover, $\operatorname{gcd}(a, b)$ is the smallest positive integer of the form as $+b t$.

Proof:

Consider the set $S=\{a m+b n: m, n$ are integers and $a m+b n>0\}$. Since S is non empty set, the well ordering principle asserts that S has a smallest member, say member is d such that $d=a s+b t$. We claim that $d=(a, b)$.

By DAT for a and $\mathrm{b}, \quad \mathrm{a}=\mathrm{dq}+\mathrm{r}$, where $0 \leq \mathrm{r}<\mathrm{d}$.
If $\mathrm{r}>0$, then $\mathrm{r}=\mathrm{a}-\mathrm{dq}=\mathrm{a}-(\mathrm{as}+\mathrm{bt}) \mathrm{q}=\mathrm{a}-\mathrm{asq}-\mathrm{btq}=\mathrm{a}(1-\mathrm{sq})+\mathrm{b}(-\mathrm{tq}) \in \mathrm{S}$, but $\mathrm{r}<\mathrm{d}$
This is contradicting the fact that d is a smallest member of S . So $\mathrm{r}=0$.
Then $\mathrm{a}=\mathrm{dq} \Rightarrow \mathrm{d} \mid \mathrm{a}$. analogously $\mathrm{d} \mid \mathrm{b}$. This proves that d is a common divisor of a and b.

Now suppose that d^{\prime} is another divisor of a and b i.e. $d^{\prime} \mid a$ and $d^{\prime} \mid b$ $\Rightarrow \mathrm{a}=\mathrm{d}^{\prime} \mathrm{h}$ and $\mathrm{b}=\mathrm{d}^{\prime} \mathrm{k}$ for some $\mathrm{h}, \mathrm{k} \in \mathrm{Z}$. then

$$
\mathbf{d}=\mathbf{a s}+\mathbf{b t}=\left(\mathbf{d}^{\prime} \mathbf{h}\right) \mathbf{s}+\left(\mathbf{d}^{\prime} \mathbf{k}\right) \mathbf{t}=\mathbf{d}^{\prime}(\mathbf{h s}+\mathbf{k t})
$$ so that, d^{\prime} is a divisor of d.

Thus d is the greatest common divisor of a and b.

Theorem: If $\mathrm{a}, \mathrm{b} \in \mathrm{I}, \mathrm{b} \neq 0$ and $\mathrm{a}=\mathrm{bq}+\mathrm{r}$, where $0 \leq \mathrm{r}<\mathrm{b}$, then $(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{r})$.
Proof: \quad let $(a, b)=c$ and $(b, r)=d$. Now $(a, b)=c \Rightarrow c \mid a$ and $c|b \Rightarrow c|(a-b q)$
Then

$$
\mathrm{c} \mid \mathrm{r} \quad(\mathrm{r}=\mathrm{a}-\mathrm{bq})
$$

Hence we have $\mathrm{c} \mid \mathrm{b}$ and $\mathrm{c} \mid \mathrm{r}$ i.e. c is a common divisor of both b and r .
therefore $\mathrm{c} \leq(\mathrm{b}, \mathrm{r}) \Rightarrow \mathrm{c} \leq \mathrm{d} \quad$.... 1
Similarly $(\mathrm{b}, \mathrm{r})=\mathrm{d} \Rightarrow \mathrm{d} \mid \mathrm{b}$ and $\mathrm{b}|\mathrm{r} \Rightarrow \mathrm{c}|(\mathrm{bq}+\mathrm{r})$
Then

$$
\mathrm{d} \mid \mathrm{a}
$$

Thus $\mathrm{d} \mid \mathrm{a}$ and $\mathrm{d} \mid \mathrm{b}$ i.e. d is a common divisor of both a and b .
therefore $\mathrm{d} \leq \mathrm{a}, \mathrm{b}) \Rightarrow \mathrm{d} \leq \mathrm{c}$
... 2

$$
\Rightarrow \mathrm{c}=\mathrm{d} \quad \text { i.e. }(\mathrm{a}, \mathrm{~b})=(\mathrm{b}, \mathrm{r})
$$

The Euclidian algorithm

Theorem: Let $\mathrm{a}=\mathrm{r}_{0}$ and $\mathrm{b}=\mathrm{r}_{1}$ be positive integers. If the division algorithm is successively Applied to obtain

$$
\begin{aligned}
& \quad r_{i}=r_{i+1} q_{i+1}+r_{i+2} \quad \text { with } 0 \leq r_{i+2}<r_{i+1} \quad i=1,2,3, \ldots n-1 \\
& \text { and } \quad r_{n+1}=0 \text {, Then }(a, b)=r_{n} ; \text { the last non zero integer. }
\end{aligned}
$$

Proof: Let $a=r_{0}$ and $b=r_{1}$ be positive integers with $a>b$. Now put $i=1,2,3, \ldots n-1$ till the remainder becomes zero. We can tabulate the result as follow

$$
\begin{array}{lc}
r_{0}=r_{1} q_{1}+r_{2} & 0 \leq r_{2}<r_{1} \\
r_{1}=r_{2} q_{2}+r_{3} & 0 \leq r_{3}<r_{2} \\
r_{2}=r_{3} q_{3}+r_{4} & 0 \leq r_{4}<r_{3} \\
\cdots \cdots \\
\cdots \cdots & \\
r_{n-2}=r_{n-1} q_{n-1}+r_{n} & 0 \leq r_{n}<r_{n-1} \\
r_{n-1}=r_{n} q_{n}+r_{n+1} & \left(r_{n+1}=0\right)
\end{array}
$$

Example: Find the GCD of 26 and 118 and express it in the form $26 s+118 t$.

Solution:

$$
\begin{aligned}
& \text { By Euclidean algorithm, we have } \\
& 118=26.4+14 \\
& 26=14.1+12 \\
& 14=12.1+2 \\
& 12=6.2+0 \\
& \text { Hence }(\mathbf{2 6}, \mathbf{1 1 8})=\mathbf{2}
\end{aligned}
$$

Now from the last but one equation i.e. $d=a s+b t$

$$
\begin{aligned}
2 & =14-12 \cdot 1 \\
& =14-[26-14.1] .1 \\
& =14-26.1+14 \cdot 1 \\
& =[118-26 \cdot 4] \cdot 2-26.1 \\
& =118.2-26.8-26.1 \\
& =118.2-26.9 \\
& =118 .(2)+26 .(-9)
\end{aligned}
$$

Therefore $\mathbf{s}=\mathbf{2}$ and $\mathbf{t}=\mathbf{- 9}$
by previous theorem each of the above equation , we get

$$
\left(r_{0}, r_{1}\right)=\left(r_{1}, r_{2}\right)=\left(r_{2}, r_{3}\right)=\ldots \ldots .=\left(r_{n-2}, r_{n-1}\right)=\left(r_{n-1}, r_{n}\right)=\left(r_{n}, 0\right)=r_{n}
$$

therefore $(a, b)=r_{n}$, where $r_{0}=a$ and $r_{1}=b$.

Example: Find the GCD of 427 and 616 and express it in the form $427 \mathrm{~s}+616 \mathrm{t}$.

Solution:

By Euclidean algorithm, we have

$$
\begin{aligned}
616 & =427.1+189 \\
427 & =189 \cdot 2+49 \\
189 & =49 \cdot 3+42 \\
49 & =42 \cdot 1+7 \\
42 & =7.6+0
\end{aligned}
$$

Hence $(427,616)=7$

Now from the last but one equation i.e. $d=a s+b t$

$$
\begin{aligned}
7 & =49+42 \cdot 1 \\
& =49-[189-(49) \cdot 3] \cdot 1 \\
& =(49) \cdot 4-189 \cdot 1 \\
& =[427-(189) \cdot 2] \cdot 4-189 \cdot 1 \\
& =(427) \cdot 4-(189) \cdot 9 \\
& =(427) \cdot 4-[616-(427) \cdot 1] \cdot 9 \\
7 & =427 \cdot 13+161 \cdot(-9)
\end{aligned}
$$

Therefore $s=13$ and $t=-9$

References

- Joseph. A. Gallian

Contemporary Abstract Algebra
Narosa publising House New Delhi IV edition

- Burton D.M.

Elementary Number theory
Universal book stall, New Delhi, II Edition 2003

- A. R. Vasishtha

Dept. of Mathematics, Meerut
Krushna Prakaskan mandir

- T. M. Karade

Elemetary Number theory
Sonu- Nilu Publication Nagpur

THANK YOU

