

Mahatma Fule Arts, Commerce, and Sitaramji Chaudhari Science Mahavidyalaya, Warud

Department of Mathematics

Topic: Extended Euclidian Algorithm

Dr. R. S. Wadbude Associate Professor **Definition:** The greatest common divisor of two non zero integer a and b is the largest common divisor of a and b .we denote this integer by gcd(a, b).

A greatest common divisor of two integer a and b is a positive integer d such that

```
i). d | a and d | bii). if, for an integer c, c | a and c | b, then c | d
```

GCD of a and b denoted by (a, b) = d

Example:

- i) $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$ are common divisors of 24 and 60
- ii) 12 is the greatest common divisor of 24 and 60. i.e. 12 = (24, 60)

Well ordering principle:

Every non empty set of positive integers contains a smallest member.

Extended Euclidian Algorithm/GCD is a Linear combination

Theorem:

For any non zero integers a and b, there exist integers s and t such that gcd(a, b) = as + bt. Moreover, gcd (a, b) is the smallest positive integer of the form as + bt.

Proof:

Consider the set $S = \{ am + bn : m, n \text{ are integers and } am + bn > 0 \}$. Since S is non empty set, the well ordering principle asserts that S has a smallest member, say member is d such that d = as + bt. We claim that d = (a, b).

By DAT for a and b, a = dq + r, where $0 \le r < d$.

If r > 0, then $r = a - dq = a - (as + bt)q = a - asq - btq = a(1 - sq) + b(-tq) \in S$, but r < d

This is contradicting the fact that d is a smallest member of S. So r = 0.

Then $a = dq \Rightarrow d \mid a$. analogously $d \mid b$. This proves that d is a common divisor of a and b.

Now suppose that d' is another divisor of a and b i.e. d'| a and d' | b $\Rightarrow a = d' h and b = d' k$ for some h, $k \in Z$. then d = as + bt = (d' h)s + (d' k)t = d'(hs + kt),so that , d' is a divisor of d.

Thus d is the greatest common divisor of a and b.

Theorem: If $a, b \in I$, $b \neq 0$ and a = bq + r, where $0 \leq r < b$, then (a, b) = (b, r).

let (a, b) = c and (b, r) = d. Now $(a, b) = c \Rightarrow c \mid a$ and $c \mid b \Rightarrow c \mid (a - bq)$ **Proof:** $c \mid r$ (r = a - bq)Then Hence we have $c \mid b$ and $c \mid r$ i.e. c is a common divisor of both b and r. therefore $c \le (b, r) \Rightarrow c \le d$1 Similarly $(b, r) = d \Rightarrow d| b$ and $b | r \Rightarrow c | (bq + r)$ d | a Then Thus d | a and d | b i.e. d is a common divisor of both a and b. therefore $d \le (a, b) \Rightarrow d \le c$...2 \Rightarrow c =d i.e. (a, b) = (b, r)

The Euclidian algorithm

Theorem: Let $a = r_0$ and $b = r_1$ be positive integers. If the division algorithm is successively Applied to obtain

 $\mathbf{r}_i = \mathbf{r}_{i+1} \, \mathbf{q}_{i+1} + \mathbf{r}_{i+2}$ with $0 \le \mathbf{r}_{i+2} < \mathbf{r}_{i+1}$ i = 1, 2, 3, ..., n-1......1and $\mathbf{r}_{n+1} = 0$, Then (a, b) = \mathbf{r}_n ; the last non zero integer.

Proof: Let $a = r_0$ and $b = r_1$ be positive integers with a > b. Now put i = 1, 2, 3, ..., n - 1 till the remainder becomes zero. We can tabulate the result as follow

$$\begin{array}{ll} r_{0} = r_{1} \ q_{1} + r_{2} & 0 \leq r_{2} < r_{1} \\ r_{1} = r_{2} \ q_{2} + r_{3} & 0 \leq r_{3} < r_{2} \\ r_{2} = r_{3} \ q_{3} + r_{4} & 0 \leq r_{4} < r_{3} \\ \cdots \cdots \\ r_{n-2} = r_{n-1} \ q_{n-1} + r_{n} & 0 \leq r_{n} < r_{n-1} \\ r_{n-1} = r_{n} \ q_{n} + r_{n+1} & (r_{n+1} = 0) \end{array}$$

Example: Find the GCD of 26 and 118 and express it in the form 26s + 118 t.

Solution:

By Euclidean algorithm, we have 118 = 26.4 + 14 26 = 14.1 + 12 14 = 12.1 + 2 12 = 6.2 + 0Hence (26, 118) = 2 Now from the last but one equation i.e. d = as + bt

$$2 = 14 - 12.1$$

= 14 - [26 - 14.1].1
= 14 - 26.1 + 14.1
= [118 - 26.4].2 - 26.1
= 118.2 - 26.8 - 26.1
= 118.2 - 26.9
= 118.(2) + 26.(-9)

Therefore **s = 2** and **t = -9**

. .

by previous theorem each of the above equation ,we get

$$(r_{0,} r_{1}) = (r_{1,} r_{2}) = (r_{2,} r_{3}) = \dots = (r_{n-2,} r_{n-1}) = (r_{n-1,} r_{n}) = (r_{n,} 0) = r_{n.}$$

therefore (a, b) = r_{n_1} where r_0 = a and r_1 = b.

Example: Find the GCD of 427 and 616 and express it in the form 427 s + 616 t.

Solution:

By Euclidean algorithm, we have

616 = 427. 1 + 189

$$42 = 7.6 + 0$$

Hence (427,616) = 7

Now from the last but one equation i.e. d = as + bt

7 =
$$49 + 42.1$$

= $49 - [189 - (49).3].1$
= $(49).4 - 189.1$
= $[427 - (189).2].4 - 189.1$
= $(427).4 - (189).9$
= $(427).4 - [616 - (427).1].9$
**7 = $427.13 + 161. (-9)$
Therefore s = 13 and t = -9**

References

Joseph. A. Gallian

Contemporary Abstract Algebra Narosa publising House New Delhi IV edition

Burton D.M.

Elementary Number theory Universal book stall, New Delhi, II Edition 2003

A. R. Vasishtha Dept. of Mathematics, Meerut Krushna Prakaskan mandir

T. M. Karade
 Elemetary Number theory
 Sonu- Nilu Publication Nagpur

THANK YOU