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Greatest common divisor

Definition: The greatest common divisor of two non zero integer a and b is the

largest common divisor of a and b .we denote this integer by gcd(a, b).

A greatest common divisor of two integer a and b is a positive integer d such
that

1).d|aand d|b
i). if, foran integerc,c|aand c|b,thenc|d

GCD of a and b denoted by (a, b) =d

Example:

i) =+1,+2,+3,+4, +6, £12 are common divisors of 24 and 60

i) 12 is the greatest common divisor of 24 and 60. i.e. 12 = (24, 60)




Well ordering principle:
Every non empty set of positive integers contains a smallest member.

Extended Euclidian Algorithm/GCD is a Linear combination
Theorem:
For any non zero integers a and b, there exist integers s and t such that gcd(a, b) = as + bt .

Moreover, gcd (a, b) is the smallest positive integer of the form as + bt.

Proof:
Consider the set S = { am + bn : m, n are integers and am + bn >0}. Since S is non
empty set, the well ordering principle asserts that S has a smallest member, say member
is d such that d =as + bt. We claim thatd = (a, b).
By DAT foraand b, a=dg+r, where0<r<d.
Ifr>0,thenr=a-dg=a- (as + bt)qg =a—asq - btg =a(1 -sq) + b(- tq) €S, but r<d
This is contradicting the fact that d is a smallest member of S. So r = 0.

Then a=dg = d|a. analogously d | b. This proves that d is a common divisor of

a and b.



Now suppose that d’ is another divisor ofaand b i.e.d’|aandd’| b
—a=d handb=d k for some h, k € Z. then
d=as+bt=(d" h)s + (d' k)t =d'(hs + kt),
so that, d’isa divisor of d.

Thus d is the greatest common divisor of a and b.



Theorem: Ifa,bel,b0and a=bqg+r, where0<r<Db,then(a, b)=(b,r).

Proof: let(a,b)=cand (b,r)=d.Now (a,b)=c= c|aandc|b=c|(a-bq)
Then c|r (r=a-Dbq)
Hence we have c |[band c | r i.e. ¢ isacommon divisor of both b and r.
therefore c<(b,r) = c<d .
Similarly (b,r)=d=d|bandb|r=c|(bg+T)
Then d|a
Thusd|aandd|b i.e.disacommon divisor of both a and b.
therefore d<(a,b) =>d<c .2
= C =d l.e. (a,b)=(b, 1)



The Euclidian algorithm

Theorem: Let a = ryand b =r; be positive integers. If the division algorithm is successively
Applied to obtain
=l Qg+l with 0<r,,<r,, i=1,2,3,.n-1 ... 1

and r..; =0, Then (a, b) =r_; the last non zero integer.

Proof: Let a = ryand b =r; be positive integers witha>b. Now puti=1,2,3,..n-1

till the remainder becomes zero. We can tabulate the result as follow

p=rya,+n, 0<r,<r;
rp=r,q,+r; 0<r;<r,
r,=ry0s+r, 0<r,<r,



Example: Find the GCD of 26 and 118 and express it in the form 26s + 118 t.

Solution:
By Euclidean algorithm, we have
118=26.4+ 14
26=14.1+12
14 = 12.1+@2
12=6.2+0
Hence (26,118) =2



Now from the last but one equationi.e. d =as + bt

2 =14-12.1

=14 -[26-14.1].1

=14-26.1+14.1

=[118-26.4].2-26.1

=118.2-26.8-26.1

=118.2-26.9

=118.(2) + 26.(- 9)
Therefore s=2 and t=-9



by previous theorem each of the above equation ,we get

(ro, ry)=(rpr)=(ryr3)==(r,ry) =(ryr,)=(r, 0)=r,

therefore (a, b)=r, wherery=aandr, =b.

Example: Find the GCD of 427 and 616 and express it in the form 427 s+ 616 t.

Solution:

By Euclidean algorithm, we have
616 =427.1+ 189
427 =189. 2 + 49

189 = 49. 3 + 42
49 = 42. 1 +@
42=7.6+0

Hence (427,616)=7



Now from the last but one equationi.e. d =as + bt

7 =49+42.1
=49 —[189 - (49).3].1
=(49).4 -189.1
=[427 —(189).2].4 —189.1
=(427).4 —(189).9
=(427).4 - [616 —(427).1].9
7 =427.13 + 161. (-9)
Therefore s=13 and t=-9
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